build a space biology superhero

High-Level Project Summary

Created a website that tells people about how different organisms deal with microgravity

Link to Final Project

Link to Project "Demo"

Detailed Project Description

Created a website that tells people about how different organisms deal with microgravity. the project tells the people, it is an easily accessable. to increase the basic knowledge of people regarding space. better learning material for society. word press.

Space Agency Data

we used links which were given by the website that helped us polish our ideas

Hackathon Journey

the hackathon journey united us to explore and create new ideas to choose this challenge. this challenge is related to our field

References

Smith S. M. & Heer M. Calcium and bone metabolism during space flight. Nutrition 18, 849–852 (2002). [PubMed] [Google Scholar]

Vernikos J. Human physiology in space. BioEssays 18, 1029–1037 (1996). [PubMed] [Google Scholar]

Crucian B. E., Stowe R. P., Pierson D. L. & Sams C. F. Immune system dysregulation following short- vs long-duration space flight. Aviat. Space Environ. Med. 79, 835–843 (2008). [PubMed] [Google Scholar]

Guéguinou N. et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J. Leukoc. Biol. 86, 1027–1038. [PubMed] [Google Scholar]

Rykova M. P., Antropova E. N., Larina I. M. & Morukov B. V. Humoral and cellular immunity in cosmonauts after ISS missions. Acta Astronaut. 63, 697–705 (2008). [Google Scholar]

Nickerson C. A., Ott C. M., Wilson J. W., Ramamurthy R. & Pierson D. L. Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345–361 (2004). [PMC free article] [PubMed] [Google Scholar]

Ciferri O., Tiboni O., Di Pasquale G., Orlandoni A. M. & Marchesi M. L. Effects of microgravity on genetic recombination in Escherichia coli. Naturwissenschaften 73, 418–421 (1986). [PubMed] [Google Scholar]

Klaus D., Simske S., Todd P. & Stodieck L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143 ( Pt 2), 449–455 (1997). [PubMed] [Google Scholar]

Nickerson C. A. et al. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68, 3147–3152 (2000). [PMC free article] [PubMed] [Google Scholar]

Wilson J. W. et al. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl. Environ. Microbiol. 68, 5408–5416 (2002). [PMC free article] [PubMed] [Google Scholar]

Ruby E., Henderson B. & McFall-Ngai M. We get by with a little help from our (little) friends. Science 303, 1305–1307 (2004). [PubMed] [Google Scholar]

Xu J. & Gordon J. I. Honor thy symbionts. Proc. Natl. Acad. Sci. USA 100, 10452–10459 (2003). [PMC free article] [PubMed] [Google Scholar]

McFall-Ngai M. J. & Ruby E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254, 1491–1494 (1991). [PubMed] [Google Scholar]

Foster J. S., Apicella M. A. & McFall-Ngai M. J. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226, 242–254 (2000). [PubMed] [Google Scholar]

McFall-Ngai M. J. Unseen forces: the influence of bacteria on animal development. Dev. Biol. 242, 1–14 (2002). [PubMed] [Google Scholar]

McFall-Ngai M., Nyholm S. V. & Castillo M. G. The role of the immune system in the initiation and persistence of the Euprymna scolopes--Vibrio fischeri symbiosis. Semin. Immunol. 22, 48–53 (2010). [PMC free article] [PubMed] [Google Scholar]

Sonnenfeld G. The immune system in space, including Earth-based benefits of space-based research. Curr. Pharmaceut. Biotechnol. 6, 343–349 (2005). [PubMed] [Google Scholar]

Nyholm S. V., Stabb E. V., Ruby E. G. & McFall-Ngai M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl. Acad. Sci. USA 97, 10231–10235 (2000). [PMC free article] [PubMed] [Google Scholar]

Lupp C. & Ruby E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620–3629 (2005). [PMC free article] [PubMed] [Google Scholar]

Stabb E. V. & Millikan D. S. in Defensive mutualism in microbial symbiosis Vol. 27, (eds. White J. F., & RTorres M. S., eds. ) 85–98 (CRC Press, 2009). [Google Scholar]

McFall-Ngai M., Heath-Heckman E. A., Gillette A. A., Peyer S. M. & Harvie E. A. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3–8 (2012). [PMC free article] [PubMed] [Google Scholar]

Koropatnick T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1188 (2004). [PubMed] [Google Scholar]

Foster J. S. & McFall-Ngai M. J. Induction of apoptosis by cooperative bacteria in the morphogenesis of host epithelial tissues. Dev. Genes Evol. 208, 295–303 (1998). [PubMed] [Google Scholar]

Montgomery M. K. & McFall-Ngai M. Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120, 1719–1729 (1994). [PubMed] [Google Scholar]

Wolf D. A. & Schwarz R. P. Analysis of gravity-induced particle motion and fluid perfusion flow in NASA-designed rotating zero-head-space tissue culture vessel. NASA Tech. Paper 3143, 1–12 (1991). [Google Scholar]

Schwarz R. P., Goodwin T. J. & Wolf D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tiss. Cult. Meth. 14, 51–58 (1992). [PubMed] [Google Scholar]

Fang A., Pierson D. L., Koenig D. W., Mishra S. K. & Demain A. L. Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Appl. Environ. Microbiol. 63, 4090–4092 (1997). [PMC free article] [PubMed] [Google Scholar]

Nauman E. A. et al. Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl. Environ. Microbiol. 73, 699–705 (2007). [PMC free article] [PubMed] [Google Scholar]

Nickerson C. A. et al. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J. Microbiol. Methods 54, 1–11 (2003). [PubMed] [Google Scholar]

Nickerson C. A., Richter E. G. & Ott C. M. Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development. J. Neuroimmune Pharmacol. 2, 26–31 (2007). [PubMed] [Google Scholar]

Barrila J. et al. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 8, 791–801 (2010). [PubMed] [Google Scholar]

Wilson J. W. et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLOS ONE 3, e3923 (2008). [PMC free article] [PubMed] [Google Scholar]

Vukanti R., Model M. A. & Leff L. G. Effect of modeled reduced gravity conditions on bacterial morphology and physiology. BMC Microbiol. 12, 4 (2012). [PMC free article] [PubMed] [Google Scholar]

Wilson J. W. et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. USA 104, 16299–16304 (2007). [PMC free article] [PubMed] [Google Scholar]

Doino J. A. & McFall-Ngai M. Transient exposures to competent bacteria initiates symbiosis-specific squid light organ morphogenesis. Biol. Bull. 189, 347–355 (1995). [PubMed] [Google Scholar]

Volkmann D. & Baluska F. Gravity: one of the driving forces for evolution. Protoplasma 229, 143–148 (2006). [PubMed] [Google Scholar]

Morey-Holton E. R. in Evolution on planet Earth: the impact of the physical environment (eds. Rothschild L. J., & Lister A., eds. ) 143–159 (Academic Press, 2003). [Google Scholar]

Mattoni R. Space flight effects and gamma radiation interaction on growth and induction of lysogenic bacteria: a preliminary report. Bioscience 18, 602–608 (1968). [Google Scholar]

Thevenet D., D'Ari R. & Bouloc P. The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. J. Biotechnol. 47, 89–97 (1996). [PubMed] [Google Scholar]

Ruby E. G. & Asato L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993). [PubMed] [Google Scholar]

Benoit M. & Klaus D. M. Microgravity, bacteria, and the influence of motility. Adv. Space Res. 39, 1225–1232 (2007). [Google Scholar]

Guadarrama S., Pulcini E., Broadaway S. C. & Pyle B. H. Pseudomonas aeruginosa growth and production of Exotoxin A in static and modeled microgravity environments. Grav. Space Biol. 18, 85–86 (2005). [PubMed] [Google Scholar]

Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S. & Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). [PubMed] [Google Scholar]

Nyholm S. V., Stewart J. J., Ruby E. G. & McFall-Ngai M. J. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ. Microbiol. 11, 483–493 (2009). [PMC free article] [PubMed] [Google Scholar]

Koropatnick T. A., Kimbell J. R. & McFall-Ngai M. J. Responses of host hemocytes during the initiation of the squid-vibrio symbiosis. Biol. Bull. 212, 29–39 (2007). [PubMed] [Google Scholar]

Lee K. H. & Ruby E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994). [PMC free article] [PubMed] [Google Scholar]

Baqai F. P. et al. Effects of spaceflight on innate immune function and antioxidant gene expression. J. Appl. Physiol. 106, 1935–1942 (2009). [PMC free article] [PubMed] [Google Scholar]

Sharma C. S. et al. Simulated microgravity activates apoptosis and NF-kappaB in mice testis. Mol. Cell. Biochem. 313, 71–78 (2008). [PMC free article] [PubMed] [Google Scholar]

Kang C. Y. et al. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur. J. Appl. Physiol. 111, 2131–2138 (2011). [PubMed] [Google Scholar]

Silverman N. & Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001). [PubMed] [Google Scholar]

Goodson M. S. et al. Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl. Environ. Microbiol. 71, (2005). [PMC free article] [PubMed] [Google Scholar]

Goodson M. S., Crookes-Goodson W. J., Kimbell J. R. & McFall-Ngai M. J. Characterization and role of p53 family members in the symbiont-induced morphogenesis of the Euprymna scolopes light organ. Biol. Bull. 211, 7–17 (2006). [PubMed] [Google Scholar]

Zychlinsky A. et al. In vivo apoptosis in Shigella flexneri infections. Infect. Immun. 64, 5357–5365 (1996). [PMC free article] [PubMed] [Google Scholar]

Anderson K. V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13–19 (2000). [PubMed] [Google Scholar]

Yang R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284–288 (1998). [PubMed] [Google Scholar]

Kaur I., Simons E. R., Kapadia A. S., Ott C. M. & Pierson D. L. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin. Vaccine Immunol. 15, 1523–1528 (2008). [PMC free article] [PubMed] [Google Scholar]

Brown B., Lindberg K., Reing J., Stolz D. B. & Badylak S. F. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 12, 519–526 (2006). [PubMed] [Google Scholar]

Boudreau N., Werb Z. & Bissell M. J. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl. Acad. Sci. USA 93, 3509–3513 (1996). [PMC free article] [PubMed] [Google Scholar]

Zayzafoon M., Gathings W. E. & McDonald J. M. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145, 2421–2432 (2004). [PubMed] [Google Scholar]

Zayzafoon M., Meyers V. E. & McDonald J. M. Microgravity: the immune response and bone. Immunol. Rev. 208, 267–280 (2005). [PubMed] [Google Scholar]

Infanger M. et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324, 267–277 (2006). [PubMed] [Google Scholar]

Boettcher K. J. & Ruby E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172, 3701–3706 (1990). [PMC free article] [PubMed] [Google Scholar]

Heath-Heckman E. A. C. & McFall-Ngai M. J. The occurance of chitin in the hemocytes of invertebrates. Biol. Bull. 114, 191–198 (2011). [PMC free article] [PubMed] [Google Scholar]